關於我們 / 引用和績效
計畫引用 碩博士論文引用 國內外期刊 專書引用 媒體引用
  1. Yang, S.-R.; Chang, R.-E.; Yang, Y.-S.; Yeh, H.-F. Environmental Temperature Effect on Hydraulic Behavior and Stability of Shallow Slopes. Environments 2023, 10, 134.
  2. Shiau, J.-T. (2023). Causality-based drought propagation analyses among meteorological drought, hydrologic drought, and water shortage. Science of The Total Environment, 888, 164216.
  3. Chen, Y.-H. R., Tseng, H.-W., Hsu, K.-C., Chen, S.-Y., Ke, C.-C., & Chiang, L.-C. (2023). Evaluation of hydrological responses to climate change for a data-scarce mountainous watershed in Taiwan. Journal of Water and Climate Change.
  4. Huang, C.-C., & Yeh, H.-F. (2022). Evaluation of seasonal catchment dynamic storage components using an analytical streamflow duration curve model. Sustainable Environment Research, 32(1), 49.
  5. Lee, T.-Y., Chiu, C.-C., Chen, C.-J., Lin, C.-Y., & Shiah, F.-K. (2023). Assessing future availability of water resources in Taiwan based on the Budyko framework. Ecological Indicators, 146, 109808.
  6. Huang, C.-C., & Yeh, H.-F. (2022). Evaluation of seasonal catchment dynamic storage components using an analytical streamflow duration curve model. Sustainable Environment Research, 32(1), 49. https://doi.org/10.1186/s42834-022-00161-8 Lee, T.-Y., Chiu, C.-C., Chen, C.-J., Lin, C.-Y., & Shiah, F.-K. (2023). Assessing future availability of water resources in Taiwan based on the Budyko framework. Ecological Indicators, 146, 109808. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.109808 Li, Y.-C., Dai, H.-Y., & Chen, H. (2022). Effects of plant density on the aboveground dry matter and radiation-use efficiency of field corn. PLOS ONE, 17(11), e0277547.
  7. Chung, PC., Chan, TC. Environmental and personal factors for osteoporosis or osteopenia from a large health check-up database: a retrospective cohort study in Taiwan. BMC Public Health 22, 1531 (2022).
  8. Kuo, CC., Liu, YC., Su, Y. et al. Responses of alpine summit vegetation under climate change in the transition zone between subtropical and tropical humid environment. Sci Rep 12, 13352 (2022).
  9. Lin, C.-Y. (2022). Disaster Politic, Law and Insurance in Climate Change Era: The Case of Taiwan, NTU Law Review. Vol. 17: 1. p.01-39.
  10. Wang, G G; Tsai, H P.,  The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences; Gottingen Vol. XLIII-B3-2022, Gottingen: Copernicus GmbH. (2022): 1033-1038., DOI:10.5194/isprs-archives-XLIII-B3-2022-1033-2022
  11. Wang, S.-J., Lee, C.-H., Yeh, C.-F., Choo, Y. F., & Tseng, H.-W. (2021). Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan. Water, 13(9), 1153.
  12. 曾宏偉、楊道昌、郭振民、張廣智、郭純伶、鄭欽韓、游保杉(2022),氣候變遷下可能水文情境資料特性分析:以臺南地區為例,農業工程學報;68卷1期,P25 - 38
  13. Chiu, S.-C., Hu, S.-C., Liao, L.-M., Chen, Y.-H., & Lin, J.-H. (2022). Norovirus Genogroup II Epidemics and the Potential Effect of Climate Change on Norovirus Transmission in Taiwan. Viruses, 14(3), 641. MDPI AG.
  14. Huang, S.-H., Mahmud, K., & Chen, C.-J. (2022). Meaningful Trend in Climate Time Series: A Discussion Based On Linear and Smoothing Techniques for Drought Analysis in Taiwan. Atmosphere, 13(3), 444. MDPI AG. Retrieved from http://dx.doi.org/10.3390/atmos13030444
  15. Chen, H.-W., & Chen, C.-Y. (2022). Warning Models for Landslide and Channelized Debris Flow under Climate Change Conditions in Taiwan. Water, 14(5), 695. MDPI AG. Retrieved from http://dx.doi.org/10.3390/w14050695
  16. Ndraha, Nodali, Hsiao, H.-I (2022). A climate-driven model for predicting the level of Vibrio parahaemolyticus in oysters harvested from Taiwanese farms using elastic net regularized regression, Microbial Risk Analysis, 2022, 100201, ISSN 2352-3522, https://doi.org/10.1016/j.mran.2022.100201.
  17. Peng, P.-H., Pan, H.-L., Tang, S.-L., Chiu, C.-M., Chiang, H.-L., Zhan, Y.-X., Hsieh, Y.-T., et al. (2022). Effects of Thinning on the Growth and Relative Change in the Diameter of a Mahogany Plantation. Forests, 13(2), 213. MDPI AG. Retrieved from http://dx.doi.org/10.3390/f13020213
  18. Shih, W.-Y., Lung, S.-C. Candice , Hu, S.-C. (2022). Perceived heat impacts and adaptive behaviours in different socio-demographic groups in the subtropics, International Journal of Disaster Risk Reduction, Volume 71, 2022, 102799, ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2022.102799.
  19. Yu, S.-Y.; Matzarakis, A.; Lin, T.-P.(2021). A Study Regarding the Thermal Environment and Thermal Comfort during the 2021 National Intercollegiate Athletic Games and Related Activities in Taiwan. Environ. Sci. Proc. 2021, 8, 32.
  20. Wan-Yu Shih, Leslie Mabon,(2021) Understanding heat vulnerability in the subtropics: Insights from expert judgements, International Journal of Disaster Risk Reduction, Volume 63, 2021, 102463, ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2021.102463.
  21. Tsai, H. P., & Wong, W.-Y. (2021). Cluster and Redundancy Analyses of Taiwan Upstream Watersheds Based on Monthly 30 Years AVHRR NDVI3g Data. Atmosphere, 12(9), 1206. MDPI AG. Retrieved from http://dx.doi.org/10.3390/atmos12091206
  22. Shih WY., Mabon L. (2021) Green Infrastructure as a Planning Response to Urban Warming: A Case Study of Taipei Metropolis. In: Ito K. (eds) Urban Biodiversity and Ecological Design for Sustainable Cities. Springer, Tokyo.
  23. Ming-Liang Lin, Christina W. Tsai, Chun-Kuang Chen(2021). Daily maximum temperature forecasting in changing climate using a hybrid of Multi-dimensional Complementary Ensemble Empirical Mode Decomposition and Radial Basis Function Neural Network,. Journal of Hydrology: Regional Studies, Volume 38,. 2021,. 100923,. ISSN 2214-5818,.https://doi.org/10.1016/j.ejrh.2021.100923.
  24. Luh, YH & Chang, YC(2021). Effect of Climate Change on Staple Food Production: Empirical Evidence from a Structural Ricardian Analysis. Agronomy, 11(2), 369.
  25. Hiromitsu Kanno, Hiroshi Matsuyama (2021). Pre-1906 extension of precipitation data for Chichi-jima in the Ogasawara (Bonin) Islands based on the analysis of historical documents, SOLA, 2021, Vol. 17, 176-179(TBA), doi:10.2151/sola.2021-030
  26. He,C. Y.,Tung, C.P.,& Lin,Y. J.(2021) Applying the DRCA Risk Template on the Flood-Prone Disaster Prevention Community Due to Climate Change. Sustainability; Basel Vol. 13, Iss. 2, (2021): 891. DOI:10.3390/su13020891
  27. Thermal physiology explains the elevational range for a lizard, Eutropis longicaudata, in Taiwan. [2020, Journal of Thermal Biology, Volume 93]
  28. Seasonal rainfall in subtropical montane cloud forests drives demographic fluctuations in a Green-backed Tit population, [ 2020, The Condor,]
  29. Geographical distribution of dioecy and its ecological correlates based on fine-scaled species distribution data from a subtropical island [2020, Ecological Research. 35:170–181.]
  30. Evaluation of the extreme rainfall predictions and their impact on landslide susceptibility in a sub-catchment scale. [2020, Engineering Geology]
  31. Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan. [2020, International Journal of Environmental Research and Public Health, 17(4):1392]
  32. Copper concentration simulation in a river by SWAT-WASP integration and its application to assessing the impacts of climate change and various remediation strategies, [ 2020,Journal of Environmental Management. ]
  33. Climate-based approach for modeling the distribution of montane forest vegetation in Taiwan, [ 2020, Applied Vegetation Science. 00:1–15.]
  34. Ching-Nuo Chen, Samkele S. Tfwala and Chih-Heng Tsai, (2020), Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed, Water, 12(8), 2247,
  35. Central Taiwan’s hydroclimate in response to land use/cover change. [2020, Environmental Research Letters]
  36. Attribution of Streamflow Variations in Southern Taiwan. [2020, water, 12, 2465]
  37. Yeh, H.-F., & Hsu, H.-L. (2019). Stochastic Model for Drought Forecasting in the Southern Taiwan Basin. Water, 11(10), 2041. MDPI AG. Retrieved from http://dx.doi.org/10.3390/w11102041
  38. Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation. [2019, Water Resources Management, 33(10):3377-3400]
  39. Mortality and morbidity associated with ambient temperatures in Taiwan. [2019, Science of The Total Environment, 651:210-217]
  40. Low cold tolerance of the invasive lizard Eutropis multifasciata constrains its potential elevation distribution in Taiwan. [2019, Journal of thermal biology, 82:115-122]
  41. Landscape Conservation Planning to Sustain Ecosystem Services under Climate Change. [2019, Sustainability, 11(5):1393]
  42. Impact of interannually varying background circulation on summertime wave patterns and tropical cyclone tracks in the western North Pacific. [2019, Climate Dynamics, 53:2249-2263]
  43. Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017. [2019, Remote sensing of environment, 225:317-327]
  44. Assessing the potential effect of extreme weather on water quality and disinfection by-product formation using laboratory simulation. [2020, Water research, 170:115296]
  45. Analysis of Severe Droughts in Taiwan and its Related Atmospheric and Oceanic Environments. [2019, Atmosphere, 10(3):159]
  46. Shou, K.J., Wu, C., & Lin, J. (2018). PREDICTIVE ANALYSIS OF LANDSLIDE SUSCEPTIBILITY UNDER CLIMATE CHANGE CONDITIONS A STUDY ON THE AI-LIAO WATERSHED IN SOUTHERN TAIWAN.
  47. 黃雅莉、吳芝伶、陳朝圳(2018),以多時期MODIS衛星影像推估臺灣地區土壤濕度之時空變異,林業研究季刊,40(1),53-69
  48. What might ‘just green enough’urban development mean in the context of climate change adaptation? The case of urban greenspace planning in Taipei Metropolis, Taiwan. [2018, World Development, 107:224-238]
  49. Modeling hydrological impacts of groundwater level in the context of climate and land cover change. [2018, Terrestrial, Atmospheric & Oceanic Sciences, 29(3):3]
  50. Identification of synoptic weather types over Taiwan area with multiple classifiers. [2018, Atmospheric Science Letters, 19(12)]
  51. Evaluating future joint probability of precipitation extremes with a copula-based assessing approach in climate change. [2018, Water Resources Management, 32(13):4253-4274]
  52. Characteristics and mechanisms of the diurnal variation of winter precipitation in Taiwan. [2018, International Journal of Climatology, 38(7):3058-3068]
  53. A dynamic downscaling approach to generate scale-free regional climate data in Taiwan [ 2018, Taiwania 63(3):256-266.]
  54. 陳玄芬、涂建翊 (2017),以TCCIP資料分析臺灣降雨的氣候特徵與長期變化。中國地理學會會刊,59,1-20。DOI:10.29972/BGSC.201712_(59).0001
  55. 許皓捷、 吳采諭(2017),以物種分布膜型推估多樣性熱點-評「生物多樣性熱點之推估:以台灣特有鳥種為例」,台灣生物多樣性研究, 19(4),255-270
  56. 紀佳臻、涂建翊(2017),臺灣夏季大雨發生頻率變化與颱風關係,地理學報, 85,27-46
  57. 柳婉郁、張簡仕傑(2017),天然災害直接與間接損失之評估方法,農林學報,65(4),237-254
  58. 李明熹、廖怡雯、郭峯豪(2017),運用 TaiWAP 評估高屏溪集水區未來情境之降雨量與降雨沖蝕指數,農業工程學報,63(4),50-64
  59. Would science serve decision-making to adapt the impact of climate change? Introduction to Climate Change Adaptation–scientific evidence, assessment framework and decision-making. [2017, Terrestrial, Atmospheric & Oceanic Sciences, 28(1)]
  60. Procedure for selecting GCM datasets for climate risk assessment. [2017, Terrestrial, Atmospheric & Oceanic Sciences, 28(1)]
  61. Modeling of mixed crop field water demand and a smart irrigation system. [2017, Water, 9(11):885]
  62. Interannual variability of the intraseasonal oscillation and its impact on the summertime wave patterns and tropical cyclones over the western North Pacific. [2017, Monthly Weather Review, 145(9):3465-3483]
  63. Greenspace patterns and the mitigation of land surface temperature in Taipei metropolis. [2107, Habitat International,60:69-80]
  64. Climate variability of heat waves and their associated diurnal temperature range variations in Taiwan. [2017, Environmental Research Letters, 12(7):74017]
  65. Assessing water resources vulnerability and resilience of southern Taiwan to climate change. [2017, Terrestrial, Atmospheric & Oceanic Sciences, 28(1):6]
  66. A study on coastal flooding and risk assessment under climate change in the mid-western coast of Taiwan. [2017, Water, 9(6):390]
  67. 馬家齊、魏郁婷、吳瑞賢(2016),因應氣候變遷調整稻作停灌決策時間對水庫用水管理的影響,農業工程學報,62(2),27-39
  68. 姜世偉(2016),不同代表濃度途徑情境對水稻作物灌溉用水量之影響評估,農業工程學報,62(4),99 - 111
  69. Wei, H. P., H. C. Li, K. C. Yeh, J. J. Liou, Y. M. Chen, and H. J. Lin, 2016: Using structural measures to reduce flood losses in a future extreme weather event. Terr. Atmos. Ocean. Sci., 27, 757-767, doi: 10.3319/TAO.2016.07.14.02
  70. Huang, W. R., Y. H. Chang, C. T. Cheng, H. H. Hsu, C. Y. Tu, and A. Kitoh, 2016: Summer convective afternoon rainfall simulation and projection using WRF driven by global climate model. Part I: Over Taiwan. Terr. Atmos. Ocean. Sci., 27, 659-671, doi: 10.3319/TAO.2016.05.02.01
  71. Ko, K., & Liu, J. (2016). Relationship between Summertime Intraseasonal Oscillations and Submonthly Wave Patterns under Meridional Periodic Fluctuations, Journal of Climate, 29(17), 6151-6166.
  72. Tsai, H. P., Yang, M. -D.(2016). Relating Vegetation Dynamics to Climate Variables in Taiwan Using 1982–2012 NDVI3g Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 4, pp. 1624-1639, April 2016, doi: 10.1109/JSTARS.2015.2511742.
  73. Ko, K., & Liu, J. (2016). Quasi-Periodic Behavior of the Pacific–Japan Pattern Affecting Propagation Routes of Summertime Wave Patterns and the Associated Tropical Cyclone Tracks over the Western North Pacific, Monthly Weather Review, 144(1), 393-408.
  74. Shou, K.-J., Lin, J.-F. (2016). Multi-scale landslide susceptibility analysis along a mountain highway in Central Taiwan. Engineering Geology, Volume 212, 2016, Pages 120-135, ISSN 0013-7952, https://doi.org/10.1016/j.enggeo.2016.08.009.
  75. Lee, C. T., 2017: Landslide trends under extreme climate events. Terr. Atmos. Ocean. Sci., 28, 33-42, doi: 10.3319/TAO.2016.05.28.01(CCA)
  76. Wu, T., H. J. Shih, H. C. Li, Y. F. Su, and Y. M. Chen(2016): Landslide impact assessment using projection rainfall data from climate change scenario. Terr. Atmos. Ocean. Sci., 27, 729-740, doi: 10.3319/TAO.2016.07.18.03
  77. Chen, C.Y. (2015). Landslide and debris flow initiated characteristics after typhoon Morakot in Taiwan. Landslides, 13, 153-164.
  78. Lee, K.-H., Shaner, P.-J.L., Lin, Y.-P. and Lin, S.-M. (2016), Geographic variation in advertisement calls of a Microhylid frog – testing the role of drift and ecology. Ecol Evol, 6: 3289-3298. https://doi.org/10.1002/ece3.2116
  79. Chao, Y. C., H. C. Li, J. J. Liou, and Y. M. Chen, 2016: Extreme bed changes in the Gaoping River under climate change. Terr. Atmos. Ocean. Sci., 27, 717-727, doi: 10.3319/TAO.2016.06.30.03
  80. Tsai, H., Lin, Y.-H., & Yang, M.-D. (2016). Exploring Long Term Spatial Vegetation Trends in Taiwan from AVHRR NDVI3g Dataset Using RDA and HCA Analyses. Remote Sensing, 8(4), 290. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs8040290
  81. Tung, Y. S., C. T. Chen, S. K. Min, and L. Y. Lin, 2016: Evaluating extreme rainfall changes over Taiwan using a standardized index. Terr. Atmos. Ocean. Sci., 27, 705-715, doi: 10.3319/TAO.2016.06.13.03
  82. Wei, H.-P., Yeh, K.-C., Liou, J.-J., Chen, Y.-M., & Cheng, C.-T. (2016). Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin. Water, 8(3), 81. MDPI AG. Retrieved from http://dx.doi.org/10.3390/w8030081
  83. Huang, W.-R., Chang, Y.-H., Hsu, H.-H., Cheng, C.-T., and Tu, C.-Y. (2016), Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events, J. Geophys. Res. Atmos., 121, 13,973– 13,988, doi:10.1002/2016JD025643.
  84. Weng, S. P., 2016: Constructing a 1-km gridded multi-scalar drought index dataset (1960 - 2012) in Taiwan based on the standardized precipitation evapotranspiration index-SPEI. Terr. Atmos. Ocean. Sci., 27, 625-648, doi: 10.3319/TAO.2016.06.13.02
  85. Chen, Y.-J., Chu, J.-L., Tung, C.-p., Yeh, K.. (2016). Climate Change Impacts on Streamflow in Taiwan Catchments Based on Statistical Downscaling Data. Terrestrial, Atmospheric and Oceanic Sciences. 27. 741. 10.3319/TAO.2016.07.20.01.
  86. Hung, C., H. J. Lin, P. Kao, M. F. Shih, and W. Fong, 2016: Boreal summer intraseasonal oscillation impact on western North Pacific typhoons and rainfall in Taiwan. Terr. Atmos. Ocean. Sci., 27, 893-906, doi: 10.3319/TAO.2016.05.30.01(A) 1. Intro
  87. Su, Y. F., C. T. Cheng, J. J. Liou, Y. M. Chen, and A. Kitoh, 2016: Bias correction of MRI-WRF dynamic downscaling datasets. Terr. Atmos. Ocean. Sci., 27, 649-657, doi: 10.3319/TAO.2016.07.14.01
  88. Kuo, Y.-C., Lee, M.-A., Lu, M.-M.(2016).Association of Taiwan's October rainfall patterns with large-scale oceanic and atmospheric phenomena, Atmospheric Research, Volume 180, 2016, Pages 200-210, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2016.05.012.
  89. Kuo, Y.-C., Lee, M.-A., Lu, M.-M.(2016). "Association of Taiwan’s Rainfall Patterns with Large-Scale Oceanic and Atmospheric Phenomena", Advances in Meteorology, vol. 2016, Article ID 3102895, 11 pages. https://doi.org/10.1155/2016/3102895
  90. Wang, L. , Chou, S. , Fu, T. , & Yang, C. (2015). Perspective health promotion policy planning to adapt to climate change. Journal of the Formosan Medical Association, 115 (7). doi: 10.1016/j.jfma.2015.06.002
  91. Shou, K. J., Wu, C. C., and Lin, J. F.(2015). Predictive analysis of landslide susceptibility in the Kao-Ping watershed, Taiwan under climate change conditions, Nat. Hazards Earth Syst. Sci. Discuss., 3, 575–606, https://doi.org/10.5194/nhessd-3-575-2015.
  92. 童慶斌、劉子明、林嘉佑、曹榮軒、李明旭(2015),氣候變遷水資源風險評估與調適決策之探討,土木水利,42(4),30-45
  93. 姜世偉、林思孝、程運達、蔡展銘(2015),氣候變遷對桃園地區水稻作物需水量影響之探討,臺灣水利,63(4),12-22
  94. Shou, K.-J., Yang, C.-M.(2015). Predictive analysis of landslide susceptibility under climate change conditions—A study on the Chingshui River Watershed of Taiwan. [2015, Engineering Geology, 192:46-62]
  95. Chang, T.-J., Chen, C.-L., Tu, Y.-L., Yeh, H.-T., Wu, Y.-T. (2015). Evaluation of the climate change impact on wind resources in Taiwan Strait. Energy Conversion and Management. 95. 435-445. 10.1016/j.enconman.2015.02.033.
  96. Chang, C.-H., Cai, L.-Y., Lin, T.-F., Chung, C.-L., van der Linden, L., & Burch, M. (2015). Assessment of the Impacts of Climate Change on the Water Quality of a Small Deep Reservoir in a Humid-Subtropical Climatic Region. Water, 7(12), 1687–1711. MDPI AG. Retrieved from http://dx.doi.org/10.3390/w7041687
  97. Lin, C.-Y., Chua, Y.-J., Sheng, Y.-F., Hsu, H.-H., Cheng, C.-T. and Lin, Y.-Y. (2015), Altitudinal and latitudinal dependence of future warming in Taiwan simulated by WRF nested with ECHAM5/MPIOM. Int. J. Climatol, 35: 1800-1809. https://doi.org/10.1002/joc.4118
  98. 李承嘉、詹士樑、黃國慶、戴政新、吳貞儀(2014),農地脆弱度評估及應用之研究,因應氣候變遷及糧食安全之農業創新研究-102年度成果發表暨研討會論文集,16-28
  99. 吳瑞賢、李明旭、方紀棠(2014)。應用主成份分析評估氣候變遷對作物產量因子之影響。農業工程學報,60(3),68-81。doi:10.29974/JTAE.201409_60(3).0005
  100. Kimura, Nobuaki, Chiang, S., Wei, H.-P., Su, Y.-F., Chu, J.-L., Cheng, C.-T., Liou, J.-J., Chen, Y.-M.,& Lin, L.-Y(2014). Tsengwen Reservoir Watershed Hydrological Flood Simulation Under Global Climate Change Using the 20 km Mesh Meteorological Research Institute Atmospheric General Circulation Model (MRI-AGCM). [2014, Terrestrial, Atmospheric & Oceanic Sciences,25(3)]
  101. Hung, C., Lin, H., & Hsu, H. (2014). Madden–Julian Oscillation and the Winter Rainfall in Taiwan, Journal of Climate, 27(12), 4521-4530. Retrieved Jan 3, 2022, from https://journals.ametsoc.org/view/journals/clim/27/12/jcli-d-13-00435.1.xml
  102. Ko, K., & Chiu, P. (2014). ISO-Modulating Effects on the East Asian Summer Monsoon Circulation Patterns Associated with Southern Taiwan’s Monsoon Rainfall, Monthly Weather Review, 142(9), 3163-3177. Retrieved Jan 3, 2022, from https://journals.ametsoc.org/view/journals/mwre/142/9/mwr-d-13-00327.1.xml
  103. Lin, W.-C., Lin, Y.-P., Lien, W.-Y., Wang, Y.-C., Lin, C.-T., Chiou, C.-R., Anthony, J., et al. (2014). Expansion of Protected Areas under Climate Change:  An Example of Mountainous Tree Species in Taiwan. Forests, 5(11), 2882–2904. MDPI AG. Retrieved from http://dx.doi.org/10.3390/f5112882
  104. Pao-Shan Yu, Tao-Chang Yang, Chen-Min Kuo, Shien-Tsung Chen; Development of an integrated computational tool to assess climate change impacts on water supply–demand and flood inundation. Journal of Hydroinformatics 1 May 2014; 16 (3): 710–730. doi: https://doi.org/10.2166/hydro.2013.018
  105. Pao-Shan Yu, Tao-Chang Yang, Chen-Min Kuo, Jung-Chen Chou & Hung-Wei Tseng (2014) Climate change impacts on reservoir inflows and subsequent hydroelectric power generation for cascaded hydropower plants, Hydrological Sciences Journal, 59:6, 1196-1212, DOI: 10.1080/02626667.2014.912035
  106. Yuner Luo & Rajib Shaw & Hanliang Lin & Jonas Joerin, 2014. Assessing response behaviour of debris-flows affected communities in Kaohsiung, Taiwan,  Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1429-1448, December.
  107. 范正成、楊智翔、張世駿、黃效禹、郭嘉峻(2013),氣候變遷對高屏溪流域崩塌潛勢之影響評估,中華水土保持學報,44(4),335-350
  108. 陳炳森、李建平、曾宇良、莊翰華(2012),以文化角度看農村社區之災後重生‒以埔里桃米社區及古坑華山社區為例,農業推廣文彙第57輯,271-298
  109. 洪致文(2012) 臺灣降雨指數(TRI) 的建立與其分析應用 [2012, J. Geogr. Sci, 67: 73-96]
  110. Yang, T. C., Chen, C., Kuo, C. M., Tseng, H. W., and Yu, P. S.: Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan, Hydrol. Earth Syst. Sci. Discuss., 9, 12395–12433, https://doi.org/10.5194/hessd-9-12395-2012, 2012.
  111. Application of multi-site weather generators for investigating wet and dry spell lengths under climate change: a case study in southern Taiwan [ 2012, Water resources management, 26(15): 4311-4326]
2023 © All Rights Reserved.   Powered by NCHC  

關於氣候變遷整合服務平台

「臺灣氣候變遷推估資訊與調適知識平台計畫」(TCCIP) 在國科會的支持下,以提供臺灣氣候變遷科學與技術研究服務為宗旨。團隊成員秉持初衷,不斷精進氣候變遷推估技術與能力、發展氣候變遷風險評估與調適工具、深入淺出轉譯氣候變遷科學數據、強化科學研究與實務應用的連結、加強與服務對象的溝通,提供符合公部門、學研單位、企業及社群機構氣候變遷資料、資訊、知識、工具一站式服務。

您是第 2,227,813 位訪客   網站導覽